Python: Command-Line Completion for argparse

argcomplete provides very useful functionality that you will basically get for free with just a couple of steps.

Implementation

Put some markup below the shebang of your frontend script in the form of a comment:

#!/usr/bin/env python
# PYTHON_ARGCOMPLETE_OK

The BASH-completion script argcomplete will basically identify and scan any script with a Python shebang that is used with BASH-completion. This entails actually running the script. In order to minimize how much time is spent loading scripts that don’t actually use argcomplete, the completion script will ignore anything that does not have this comment directly following the shebang.

Next, add and import for the argcomplete package and run argcomplete.autocomplete(parser) after you have configured your command-line parameters but before your call to parser.parse_args() (where parser is an instance of argparse.ArgumentParser). This function will produce command-line configuration metadata and then terminate.

That is it. Note that it is not practical to assume that everyone who uses your script will have argcomplete installed. They may not be using BASH (BASH is the only well-supported shell at this time), they may not be using a supported OS, and/or any commercial environments that adopt your tools may be server environments that have no use for command-line completion and refuse to support it. Therefore, you should wrap the import with a try-except for ImportError and then only call argcomplete.autocomplete if you were able to import the package.

Installation

To install autocomplete, the simplest route is to merely do a “sudo pip install argcomplete” and then call “activate-global-python-argcomplete” (this is a physical script likely installed to /usr/local/bin. This only has to be done once and will install a non-project-specific script that will work for any script that is equipped to use argcomplete. For other configuration and semantics, see the project page.

Custom String Template Format in Python

This might be necessary if you, for example, want to apply your own set of replacements to a string argument that will be passed to you by another mechanism that applies its own set of replacements.

This example supposes that you might want to use square-brackets instead of the standard curly-brackets.

import string
import re

_FIELD_RE = re.compile(r'\[([a-zA-Z0-9_]+)\]')

class CustomReplacer(string.Formatter):
    def parse(self, s):
        last_stop_index = None
        for m in _FIELD_RE.finditer(s):
            token_name = m.group(1)

            start_index, stop_index = m.span()

            if start_index == 0:
                prefix_fragment = ''
            elif last_stop_index is None:
                prefix_fragment = s[:start_index]
            else:
                prefix_fragment = s[last_stop_index:start_index]

            last_stop_index = stop_index

            yield prefix_fragment, token_name, '', None

cr = CustomReplacer()
template = 'aa [name]      bb [name2] cc dd [name3]'

replacements = {
    'name': 'howard',
    'name2': 'mark',
    'name3': 'james',
}

output = cr.format(template, **replacements)
print(output)

Output:

aa howard      bb mark cc dd james

Note that no formatting is supported with our custom replacer (though it could be added, with more work). If any formatting specifiers are provided, they will fail the regular-expression match and be ignored.

Measure Internet Speed from CLI

Use speedtest-cli:

$ curl -s https://raw.githubusercontent.com/sivel/speedtest-cli/master/speedtest.py | python -
Retrieving speedtest.net configuration...
Testing from Comcast Cable (73.1.128.16)...
Retrieving speedtest.net server list...
Selecting best server based on ping...
Hosted by Broadwave (Fort Lauderdale, FL) [43.78 km]: 22.155 ms
Testing download speed................................................................................
Download: 232.72 Mbit/s
Testing upload speed......................................................................................................
Upload: 10.07 Mbit/s

Python: Parsing XML and Retaining the Comments

By default, Python’s built-in ElementTree module strips comments as it reads them. The solution is just obscure enough to be hard to find.

import xml.etree.ElementTree as ET

class _CommentedTreeBuilder(ET.TreeBuilder):
    def comment(self, data):
        self.start('!comment', {})
        self.data(data)
        self.end('!comment')

def parse(filepath):
    ctb = _CommentedTreeBuilder()
    xp = ET.XMLParser(target=ctb)
    tree = ET.parse(filepath, parser=xp)

    root = tree.getroot()
    # ...

When enumerating the parsed nodes, the comments will have a tag-name of “!comment”.

Repo: How to Parse and Use a Manifest Directly From Python

Repo is a tool from AOSP (Android) that allows you to manage a vast hierarchy of individual Git repositories. It’s basically a small Python tool that adds some abstraction around Git commands. The manifest that controls the project tree is written in XML, can include submanifests, can assign projects into different groups (so you do not have to clone all of them every time), can include additional command primitives to do file copies and tweak how the manifests are loaded, etc. The manifest is written against a basic specification but, still, it is a lot easier to find a way to avoid doing this yourself.

You can access the built-in manifest-parsing functionality directly from the Repo tool. We can also use the version of the tool that’s embedded directly in the Repo tree.

For example, to load a manifest:

/tree/.repo/repo$ python
>>> import manifest_xml
>>> xm = manifest_xml.XmlManifest('/tree/.repo')

Obviously, you’ll be [temporarily] manipulating the sys.path to load this from your integration.

To explore, you can play with the “projects” (list of project objects) and “paths” properties (a dictionary of paths to project objects).

Number of projects:

>>> print(len(xm.projects))
878
>>> print(len(xm.paths))
878

paths is a dictionary.

A project object looks like:

>>> p = xm.projects[0]
>>> p


>>> dir(p)
['AbandonBranch', 'AddAnnotation', 'AddCopyFile', 'AddLinkFile', 'CheckoutBranch', 'CleanPublishedCache', 'CurrentBranch', 'Derived', 'DownloadPatchSet', 'Exists', 'GetBranch', 'GetBranches', 'GetCommitRevisionId', 'GetDerivedSubprojects', 'GetRegisteredSubprojects', 'GetRemote', 'GetRevisionId', 'GetUploadableBranch', 'GetUploadableBranches', 'HasChanges', 'IsDirty', 'IsRebaseInProgress', 'MatchesGroups', 'PostRepoUpgrade', 'PrintWorkTreeDiff', 'PrintWorkTreeStatus', 'PruneHeads', 'StartBranch', 'Sync_LocalHalf', 'Sync_NetworkHalf', 'UncommitedFiles', 'UploadForReview', 'UserEmail', 'UserName', 'WasPublished', '_ApplyCloneBundle', '_CheckDirReference', '_CheckForSha1', '_Checkout', '_CherryPick', '_CopyAndLinkFiles', '_ExtractArchive', '_FastForward', '_FetchArchive', '_FetchBundle', '_GetSubmodules', '_GitGetByExec', '_InitAnyMRef', '_InitGitDir', '_InitHooks', '_InitMRef', '_InitMirrorHead', '_InitRemote', '_InitWorkTree', '_IsValidBundle', '_LoadUserIdentity', '_Rebase', '_ReferenceGitDir', '_RemoteFetch', '_ResetHard', '_Revert', '_UpdateHooks', '__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_allrefs', '_getLogs', '_gitdir_path', '_revlist', '_userident_email', '_userident_name', 'annotations', 'bare_git', 'bare_objdir', 'bare_ref', 'clone_depth', 'config', 'copyfiles', 'dest_branch', 'enabled_repo_hooks', 'getAddedAndRemovedLogs', 'gitdir', 'groups', 'is_derived', 'linkfiles', 'manifest', 'name', 'objdir', 'old_revision', 'optimized_fetch', 'parent', 'rebase', 'relpath', 'remote', 'revisionExpr', 'revisionId', 'shareable_dirs', 'shareable_files', 'snapshots', 'subprojects', 'sync_c', 'sync_s', 'upstream', 'work_git', 'working_tree_dirs', 'working_tree_files', 'worktree']

The relative path for the project:

>>> path = p.relpath
>>> xm.paths[path]

The revision for the project:

>>> p.revisionExpr
u'master'

The remote for the project:

>>> p.GetRemote('origin').url
u'ssh://gerrit.company.com:2537/android/platform/external/lzma'

You can also get a config object representing the Git config for the bare archive of the project:

>>> p.config


>>> dir(p.config)
['ForRepository', 'ForUser', 'GetBoolean', 'GetBranch', 'GetRemote', 'GetString', 'GetSubSections', 'Global', 'Has', 'HasSection', 'SetString', 'UrlInsteadOf', '_ForUser', '_Global', '_Read', '_ReadGit', '_ReadJson', '_SaveJson', '__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_branches', '_cache', '_cache_dict', '_do', '_json', '_remotes', '_section_dict', '_sections', 'defaults', 'file']

>>> p.config.file
u'/tree/.repo/projects/external/lzma.git/config'

An example of how to efficiently establish a tree of projects to paths:

_MAPPING_CACHE = {}

def get_repo_project_to_path_mapping(path):
    try:
        return _MAPPING_CACHE[path]
    except KeyError:
        pass

    repo_meta_path = os.path.join(path, '.repo')
    repo_tool_path = os.path.join(repo_meta_path, 'repo')

    if repo_tool_path not in sys.path:
        sys.path.insert(0, repo_tool_path)

    import manifest_xml

    xm = manifest_xml.XmlManifest(repo_meta_path)
    project_to_path_mapping = {}
    for path, p in xm.paths.items():
        project_to_path_mapping[str(p.name)] = str(path)

    _MAPPING_CACHE[path] = project_to_path_mapping
    return project_to_path_mapping

Cog: Evaluate Arbitrary Python Fragments in a Template Document

You provide any text document with embedded fragments of Python, and Cog renders it:

using namespace std;

#include <iostream>

int main() {
    cout << "Hello Earth." << endl;


/*[[[cog

print("""\
cout << "Hello Mars." << endl;
printf("Goodbye Pluto.\\n");
""")

]]]*/

//[[[end]]]


  return 0;
}

Notice that newlines have to be escaped.

Translate:

$ cog.py hello_world.cpp.cog > hello_world.cpp

Output:

using namespace std;

#include <iostream>

int main() {
    cout << "Hello Earth." << endl;


/*[[[cog

print("""\
cout << "Hello Mars." << endl;
printf("Goodbye Pluto.\\n");
""")

]]]*/
cout << "Hello Mars." << endl;
printf("Goodbye Pluto.\n");

//[[[end]]]


  return 0;
}

General build and run:

$ g++ -o hello_world hello_world.cpp
$ ./hello_world
Hello Earth.
Hello Mars.
Goodbye Pluto.